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Abstract Biomass is an important variable in biosurfac-

tant production process. However, such bioprocess

variable, usually, is collected by sampling and determined

by off-line analysis, with significant time delay. Therefore,

simple and reliable on-line biomass estimation procedures

are highly desirable. An artificial neural network model

(ANN) is presented for the on-line estimation of biomass

concentration, in biosurfactant production by Candida li-

polytica UCP 988, as a nonlinear function of pH and

dissolved oxygen. Several configurations were evaluated

while developing the optimal ANN model. The optimal

ANN model consists of one hidden layer with four neurons.

The performance of the ANN was checked using experi-

mental data. The results obtained indicate a very good

predictive capacity for the ANN-based software sensor

with values of R2 of 0.969 and RMSE of 0.021 for biomass

concentration. Estimated biomass using the ANN was

proved to be a simple, robust and accurate method.

Keywords Artificial neural network � Software sensor �
Biomass � Biosurfactant production � Candida lipolytica

Introduction

The worldwide surfactant market, in the last years of

twentieth century, was around $94 billion per annum, and

their demand was expected to increase at a rate of 35%

[11]. Even that sustainable management of natural values

and tightening environmental protection laws have effec-

tively resulted in an increasing interest in biosurfactants as

possible alternatives to chemical surfactants; at present,

the synthetic surfactants continue to dominate the global

market because of high biosurfactant production costs.

The reduction of the overall biosurfactant production costs

usually depends on the strain improvements, the use of

low-cost raw materials such as agricultural and industrial

wastes as substrates, the use of process scale-up and the

use of advanced computer-based techniques for process

control and optimization. The lack of reliable, robust

and low cost on-line sensors for key process variables,

particularly for biological variables like biomass concen-

tration and emulsification activity, limits the monitoring,

control and cost optimization of biosurfactant production

processes [1–3].

Several methods have been developed for estimating

biomass. They differ in the measured phenomema or
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correlating variable. An inevitable result of this is that all

the different methods cannot be interrelated or applicable

to all processes and organisms. Different methods empha-

size different biomass properties, e.g., cell number, cell

viability, metabolic state or mass total. Thus, it is also

important to acknowledge the limitations of different

measurement principles as well as the correlation of the

method used to the variable that needs to be known.

Currently, the most common method for estimating bio-

mass is undoubtedly the absorbance measurement [19].

However, there are a wide number of techniques available

to estimate biomass concentration: bioluminescence and

chemiluminescence methods, epifluorescence microscopy,

nephelometry, turbidimetry, electronics counting and

sizing techniques (Coulter counting, flow cytometry), im-

pedimetry, acoustics techniques, fluorescence-based

methods, light scattering, microcalorimetry and others [24].

These methods are expensive and difficult to apply for on-

line monitoring of biomass concentration in a biosurfactant

production process. Moreover, computational methods

based on conventional and/or artificial intelligence tech-

niques may be used to predict biomass from process

variables, like pH, temperature or dissolved oxygen (DO)

[19].

The present work deals with the development of a

prototype neural network-based software sensor for real

time estimation of biomass concentration in a biosurfac-

tant production process by Candida lipolytica UCP 988.

Conventional off-line analyses of biomass are limited by

the sampling frequency and duration, which usually take

several hours. ‘Software sensors’ are mathematical algo-

rithms, which provide reliable real-time estimation of

unmeasured variables by using their correlation with

available process data, and they also present the advan-

tages of to-be-cheaper and faster than off-line analytical

methods that require large and expensive instruments.

Among the techniques used for the development of soft-

sensors, artificial neural networks (ANNs) have strong

potential in the on-line estimation of bioprocess [4].

Although the ability of neural networks to model non-

linear and time-varying dynamics of bioprocesses—like

wine making [8], penicillin fermentation [13], ethanol

production [18], glucomylase production [19], lysine

production [26], lipase production [22], baker’s yeast

fermentation [9], b-glucan extraction [12]—has been

known for many years, their application as software

sensor in biosurfactant production processes is recent [1,

3]. The purpose of this study is to develop an ANN-based

software sensor for on-line estimation of biomass con-

centration, with enough complexity to capture the

biosurfactant process characteristics and with sufficient

simplicity to allow the model to be easily understood and

implemented.

Materials and methods

Microorganism

The organism used was a strain of C. lipolytica UCP 988.

This organism was maintained at 4 �C on yeast mold agar

slants containing the following: yeast extract (0.3% w/v),

malt extract (0.3% w/v), D-glucose (1% w/v), tryptone

(0.5% w/v) and agar (1.5% w/v). The pH was adjusted to

5.0 with HCl.

Medium for inoculum development

Seed medium—SWDW-PASUG-2—was composed of sea

water (50% v/v), distilled water (50% v/v), potassium

phosphate (2.628% w/v), ammonium sulfate (2.130% w/v),

urea (0.544% w/v), D-glucose (5% w/v). The initial pH of

the production media was adjusted to 5.3 with 40% NaOH.

The inoculum for bioemulsifier production was prepared in

four Erlenmeyer flasks with capacity of 500 ml containing

100 ml of SWDW-PASUG-2 medium. Then, this suspen-

sion was incubated at 28 �C for 48 h at 150 rpm, and the

culture having approximately 108 cells/ml was used to

inoculate the bioreactor at 10% v/v.

Medium for biosurfactant production

Cultivations were conducted in a 5-l bioreactor (Bio-

Flo2000, New Brunswick) equipped with standard probes

for pH, temperature, DO and auxiliary equipment, con-

taining 4 l of SWDW-PASUCO-2 medium: sea water

(50% v/v), distilled water (50% v/v), potassium phosphate

(2.628% w/v), ammonium sulfate (2.130% w/v), urea

(0.544% w/v), corn oil (5% v/v). The initial pH of the

production media was adjusted to 5.3 with 40% NaOH.

Full factorial design

A 22 full factorial design composed of a set of four

experiments, with three replicates at the central point, was

carried out to verify the effects and interactions of the

temperature and agitation rate on the biomass concentra-

tion and emulsification activity in biosurfactant production

process by C. lipolytica [1]. The range and levels of the

factors (or independent variables) under study are given in

Table 1. Statistical analysis of the factorial design was

performed using Statistica� software version 6.0 (Statsoft,

Inc., USA).

Biomass concentration determination

Biomass concentration was determined gravimetrically, by

dry-weight measurement at 80 �C for 24 h after filtration
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of the samples through 0.22 lm predried Millipore

membranes.

Assay of emulsification activities

Emulsification activity was evaluated according to the

method described by Cirigliano and Carman [7]. Cell-free

filtrates were prepared for each culture, and the emulsifi-

cation activity for water-in-hexadecane emulsions was

determined [1].

Surface tension measurement

The surface tensions of the cell-free broths were measured

by Du Nouy ring method [5] using a digital tensiometer

model Sigma 70 (KSV Instruments Ltd, Finland) at room

temperature.

Neural network software sensors development

environment

Prototypes of the ANN-based software sensors were con-

structed using Neural Network Toolbox 4.01 [10], designed

to run in the MATLAB technical computing environment

(Matlab 6.1 Mathworks).

Neural network software sensor development

methodology

Data acquisition

The data sets required to train, validate and test the neural

software sensors were obtained from biosurfactant pro-

duction experiments carried out using corn oil and sea

water-based mineral medium in a 5-l bioreactor, under

different temperature and agitation conditions specified in

22 full factorial design and at a aeration rate of 1 vvm [1]. A

22 full-factorial design with three replicates at the center

point was carried out and five experimental data set tripli-

cates were obtained at 28 �C and 150 rpm; 28 �C and

300 rpm; 31 �C and 150 rpm; 31 �C and 300 rpm and

29.5 �C and 225 rpm [1]. Data were recorded from the

available on-line sensors (pH and DO) and from off-line

sample analysis (biomass and emulsification activity)

performed every 0, 4, 18 and 24 h on the first day and every

24 h for the next 6 days. The experimental data set triplicate

obtained at 28 �C and 150 rpm (more economic condition:

temperature and agitation were used at their lowest values),

with varying pH and DO, was used to train, validate and test

the neural software sensors, because in this condition, after

120 h of cultivation was obtained 5.46 unity of emulsifi-

cation activity—the best emulsification activity to water-in-

n-hexadecane emulsions of the 22 full-factorial design

carried out—and biomass concentration of 16.103 g/l. The

cell-free filtrate containing the surfactant produced by C.

lipolytica, under the same conditions, decreased the surface

tension of water from 72 to 33 mN/m [1].

Selection of input variables

Sensitivity analysis and historical knowledge about the

process were used to select the most important input

variables to estimate biomass concentration. To eliminate

input variables generally known to have no direct or very

little influence on biomass concentration, a large number of

NN models were developed using different sets of input

variables [1]. Although there are no systematic rules

available for the secondary measurements selection, the

following criteria were considered for helping to achieve

the selection [14]:

(1) Sensitivity. The secondary variables pH and DO are

relevant to biomass concentration (primary output)

and also to rapidly reflect the unmeasured distur-

bances. In addition, the variables pH and DO embrace

biomass concentration measurements that represent

the entire range of variation of the phenomenon under

study.

(2) Availability. The secondary variables pH and DO are

measurable on-line without much difficulty and at a

reasonable cost.

(3) Robustness. The biomass software sensor using the

secondary variables pH and DO showed to be least

sensitive to model errors.

Data preprocessing

The experimental data were divided into three sets: a

training set used to adjust the weighting coefficients; a

validation set used to find the optimal configuration of the

software sensor and a test set was used to verify the true

performance of the ANN-based software sensor chosen.

The training, validation and test sets were smoothed and

expanded by interpolation using a piecewise smoothing

cubic spline [1, 6, 16, 20, 25]. The smoothing of relatively

sparse off-line data was necessary not only to eliminate the

noise related to the measurement errors but also to expand,

Table 1 Values of temperature and agitation at different levels of the

22 full factorial design

Independent variables Levels

-1 0 1

Temperature (�C) 28 29.5 31

Agitation (rpm) 150 225 300
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by interpolation, the data set used for neural model training.

The measurements patterns used to train, validate and test

the network were normalized between 0.1 and 0.9, because

these values were found to improve convergence speed.

Training, validation and test procedures

Twenty neural network software sensor prototypes with

one hidden layer and number of neurons varying from 1 to

20 were tested in the biosurfactant production process for

estimation of biomass concentration. The biomass dry

weight to be estimated in real-time was chosen as the

output vector. The input process variables included pH and

DO. The sigmoid and linear functions were used, respec-

tively, as activation functions in hidden and output layers.

The goal of neural network training is to obtain a net-

work, which produces small errors on the training set, but

which will also respond properly to novel inputs. When a

network is able to perform as well on validation set inputs

as on training set inputs, the network generalizes well. The

training process adjusts weights to minimize the error

between the measured output and the output produced by

the network. Through this adjustment, the neural network

learns the input–output behaviors of the system. This pro-

cedure does not necessarily give a network with good

generalization ability when the number of connection

weights is relatively large. In such situation, overfitting to

the training data occurs. To overcome this problem, there

are several approaches such as regularization learning.

In this work, the training algorithm used was the

Levenberg–Marquardt-based backpropagation algorithm

[17], in conjunction with Bayesian regularization [15, 23].

One feature of this algorithm is that it provides a measure

of how many network parameters (weights and biases) are

being effectively used by the network. The typical per-

formance function that is used for training feedforward

neural networks is the sum of squares of the network errors

(sse). It is possible to improve generalization modifying the

sse performance function by adding a term, ssw, that

consists of the sum of squares of the network weights and

biases. The performance function resultant ssreg is defined

as:

ssreg ¼ asseþ bssw ð1Þ

where

sse ¼
XN

i¼1

ti � aið Þ2 ð2Þ

ssw ¼ 1

n

Xn

j¼1

w2
j ð3Þ

a ¼ c
2ssw

ð4Þ

b ¼ np� c
2sse

ð5Þ

and np and c are, respectively, the total number of

parameters in the network and the number of parameters

effectively used by the network [10, 15]. The parameter c is

a measure of how many parameters of the network are

effectively used in reducing the error function and it can

vary from 0 to np. Each prototype was trained separately,

ten times, with different initial weight matrices, using the

same training data set with 1,000 iteration cycles and with

learning rate coefficients of 0.001. After the completion of

each training, the networks were validated by presenting

experimental data sets, which were not used during

training.

Comparison of neural network performances

Selecting appropriate criteria to differentiate between dif-

ferent types of models is a prerequisite for a good modeling

approach. A compromise must be made between the desire

to have a simple model with fewer parameters and more

accurate predictions at the cost of a large number of

parameters [18].

Since many of the published works on ANN application

present different performance indices, it is usual authors

investigated several well-known performance measures to

allow comparisons with other studies (there being no uni-

versally accepted measure of neural network performance).

It is important to apply multiple error measures taking into

account that some measures penalize more the errors of

greater magnitude (rmse), others penalize more the errors of

lower magnitude (msre), others can provide useful indica-

tions of a model’s overall performance (for example,

coefficient of determination R2), while others penalize

models that have excessive numbers of parameters [e.g., A

information criteria (AIC) and B information criteria (BIC)].

In this study, analysis of the statistical indices curves—

mean squared error (mse), root mean squared error (rmse),

normalized root mean squared error (nrmse), defined

according to Eqs. 6, 7 and 8, respectively—were used to

compare model performances and to choose the more

accurate model.

mse ¼ 1

N

XN

i¼1

ti � aið Þ2 ð6Þ

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ti � aið Þ2
vuut ð7Þ
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nrmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1

ti � aið Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1

ti � �að Þ2
s ð8Þ

where ti represents the ith neural network target (real bio-

mass); ai represents the ith neural network response

(estimated biomass); �a represents the mean neural network

response, which is the average of a over the N patterns

(mean biomass); and N represents the total number of

patterns in the corresponding set (training or validation).

The selection criteria are based on these statistical

indices for the validation set instead of that for the training

set to ensure model generalization. The ‘goodness of fit’ in

both training and validation was given by the coefficient of

determination, R2, which describes the variance in the

modeled variable that can be explained with the model [21,

22]. Graphical analysis of the plot of network predictions

versus the experimental data was also used for corrobo-

rating the selection of the best network.

Results and discussion

Different variables affect the biomass concentration in the

different phases of the biosurfactant production process by

C. lipolytica. The complex relationship between the system

conditions (temperature, pH, DO, aeration and agitation

rates, media components, substrate concentrations, etc.)

and the biomass concentration is not easy to describe

through a simple mathematical equation. Neural network-

based modeling using experimental data of the bio-

surfactant production process by C. lipolytica allowed

demonstrating that, in the studied conditions, the biomass

is a function of pH and DO. However, the small size of

neural network developed, with only four hidden neurons,

does not reduce its sufficiency, representativeness and

importance. A model with a large set of input variables can

cause various problems, such as overfiting, expensive and

time-consuming data acquisition, without necessarily

leading to an improvement in the performance of the neural

network. Small-size neural networks are important for real-

time process control applications. Large networks have an

enormous number of connections, and therefore, the

amount of data and the calculation time could be extremely

high. In general, networks with fewer hidden neurons are

preferable, as they usually have better generalization

capabilities, fewer over-fitting problems and are more

computationally efficient.

In this work, the capability of different prototypes of

neural network-based software sensors with one hidden

layer for estimation of biomass in biosurfactant production

process by C. lipolytica was investigated. The ANN models

that were generated were compared and the best was

selected based on its global determination coefficient (Rg
2)

and statistical indices (sse, mse, rmse and nrmse), and by

graphical analysis of the plot of network predictions versus

the experimental data sets. It was also taken into account

that networks with fewer hidden neurons use smaller

training data sets and therefore require less time and

computational effort.

Validation data sets were assembled to assess the pre-

dictive accuracy of the trained NN. The pH and DO

profiles, obtained at 25 �C, 150 rpm and 1 vvm, used in the

validation set to assess the ability of generalization of the

several neural network-based software sensor prototypes

after the training, are shown in Fig. 1. The effect of the

number of hidden neurons on the neural network training

parameters epoch, np, c and ssw is presented in first four

columns of Table 2 and illustrated in Fig. 2. The effect of

the number of hidden neurons on the statistical indices sse,

mse, rmse, nrmse, and Rg
2—in simulations carried out using

the validation set for estimation of biomass in biosurfactant

production process by C. lipolytica—is presented in the last

five columns of Table 2 and illustrated in Fig. 3. Optimal
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100Fig. 1 Time course of (a) pH

and (b) DO in biosurfactant

production process by Candida
lipolytica in a stirred tank

bioreactor, with temperature,

agitation and aeration controlled

at 28 �C, 150 rpm and 1 vvm,

respectively. Profiles used in the

validation data set
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Table 2 Neural network training parameters (epoch, ssw, np and c) and statistical indices (sse, mse, rmse, nrmse and Rg
2) obtained using

validation data set, as a function of the neuron number (S1) in the hidden layer

S1 epoch np c ssw sse mse rmse nrmse Rg
2

1 240 5 3.85 9.30E?01 2.58E-01 1.29E-03 3.59E-02 3.29E-04 8.07E-01

2 93 9 8.27 5.51E?02 1.04E-01 5.22E-04 2.28E-02 2.09E-04 9.62E-01

3 513 13 10.20 7.51E?02 1.04E-01 5.20E-04 2.28E-02 2.09E-04 9.64E-01

4 234 17 14.60 1.61E?03 8.90E-02 4.45E-04 2.11E-02 1.93E-04 9.69E-01

5 104 21 15.80 7.30E?02 8.72E-02 4.36E-04 2.09E-02 1.91E-04 9.67E-01

6 463 25 16.60 9.35E?02 9.91E-02 4.95E-04 2.23E-02 2.04E-04 9.67E-01

7 144 29 17.30 1.00E?03 9.29E-02 4.65E-04 2.16E-02 1.97E-04 9.66E-01

8 79 33 17.30 1.38E?03 9.95E-02 4.98E-04 2.23E-02 2.04E-04 9.68E-01

9 68 37 19.30 1.47E?03 1.08E-01 5.39E-04 2.32E-02 2.13E-04 9.67E-01

10 124 41 17.00 6.62E?02 8.71E-02 4.36E-04 2.09E-02 1.91E-04 9.69E-01

11 66 45 20.30 3.58E?03 9.58E-02 4.79E-04 2.19E-02 2.00E-04 9.69E-01

12 63 49 20.70 4.19E?03 9.89E-02 4.94E-04 2.22E-02 2.04E-04 9.71E-01

13 20 53 21.90 2.61E?03 1.06E-01 5.28E-04 2.30E-02 2.11E-04 9.70E-01

14 59 57 23.60 5.48E?03 9.19E-02 4.59E-04 2.14E-02 1.96E-04 9.72E-01

15 28 61 23.10 6.63E?03 1.01E-01 5.07E-04 2.25E-02 2.06E-04 9.69E-01

16 7 65 23.20 8.98E?03 1.03E-01 5.16E-04 2.27E-02 2.08E-04 9.71E-01

17 6 69 26.40 1.02E?04 9.87E-02 4.94E-04 2.22E-02 2.03E-04 9.71E-01

18 5 73 25.00 8.15E?03 1.03E-01 5.13E-04 2.27E-02 2.08E-04 9.70E-01

19 4 77 24.20 1.26E?04 9.62E-02 4.81E-04 2.19E-02 2.01E-04 9.70E-01

20 8 81 27.70 1.08E?04 9.47E-02 4.74E-04 2.18E-02 1.99E-04 9.72E-01
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numbers of nodes of input and hidden layers were deter-

mined by model selection criteria on validation data set.

Table 2 shows how the prediction accuracy is affected

by the number of neurons in the hidden layer. Ideally, the

values of statistical indices (sse, mse, rmse, nrmse),

obtained with the validation data set, should be close to 0,

indicating that the model well learned the relationship

among the input and output parameters. The generalization

ability and the robustness of the model are measured by the

global coefficient of determination (Rg
2). If the value of

global coefficient of determination Rg
2 is unity, the gener-

alization ability and the robustness of the model are

maximal. The prototype that gives the best results, using

the validation data set, is the one with pH and DO con-

centration as input pattern and with four neurons in the

hidden layer. It may be observed from Table 2 that the

fourth configuration (i.e., neural network with 2-4-1

topology) results in the best combination of low estimation

errors, high global coefficient of determination and

low number of hidden neurons. For the validation set,

the model with topology 2-4-1 presented values of the sta-

tistical indices sse, mse, rmse, nrmse and Rg
2 of 8.90E-02,

4.45E-04, 2.11E-02, 1.93E-04 and 9.69E-01,

respectively.

Figure 3 shows that fewer than four hidden neurons

caused mse, rmse and nrmse to rise sharply. More than four

hidden neurons caused mse, rmse and nrmse to rise slowly.

The global coefficient of determination (Rg
2) presented

opposite behavior. The addition of more neurons in the

hidden layer initially increased and later decreased and

increased slightly the fits, but did not lead to an overfitting,

reducing the neural network ability to generalize. Simulation

shows that Levenberg–Marquardt-based backpropagation

algorithm in conjunction with Bayesian regularization pro-

duces networks with better generalization performance and

lower susceptibility to overfitting as the network size

increases.

The performance of this neural network model for pre-

diction of biomass concentration, using the training and

validation data set, is illustrated in Fig. 4. The comparison

of the neural network model prediction with the experi-

mental values of biomass concentration is presented in the

Fig. 4a, c using time course graph and in Fig. 4b, d using

parity plots. Figure 4 illustrates the performance of the
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selected ANN software sensor with topology 2-4-1 for the

prediction of biomass concentration. Figure 4a and 4c

shows the predictions obtained with the ANN model for

100 data chosen randomly from the training and validation

data sets, respectively. The ANN model, for both training

and validation, accurately estimated the variation of real

biomass concentrations values. Figure 4b and 4c show the

parity plots, i.e., comparisons between the network outputs

(estimations) and the corresponding targets (experimental

data), for the training and validation datasets, respectively.

The goodness of fit is given by the coefficient of deter-

mination R2. If the value of R2 is unity, the model predicts

exactly every experimental point. In this case, coefficients

of determination (R2) of 0.998 and 0.972 were obtained for

training and validation data sets, respectively. Coefficients

of determination higher than 0.90 indicated excellent

agreement of the neural network model with the experi-

mental training and validation values, obtained for biomass

concentration. As shown in Fig. 4d, the regression line is

very close to the 45� line, and the dispersion of data is

relatively small when measurement errors for biomass in

industrial data are taken into account. This plot clearly

shows that the model can satisfactorily predict biomass

from data contained in the biosurfactant production process

database. The slight deviation from linearity can be

attributed to the noise in the experimental biomass con-

centration values.

Finally, empirical relations among pH, DO and biomass

in biosurfactant process were investigated and established.

The results obtained are very important, because they

clearly reveal the sufficiency and representativeness of pH

and DO as relevant input variables for on-line estimation of

biomass concentration in biosurfactant production process

by C. lipolytica. Analysis of the results demonstrated that

the neural modeling approach is a useful tool for accurate

and cost-effective modeling of biosurfactant production

processes. Therefore, the softsensor with topology 2-4-1

developed in the present work can be used for the

Time (h)

(a)

0 20 40 60 80 100 120 140 160 180

B
io

m
as

s 
(g

/l)

0

2

4

6

8

10

12

14

16

18

Real
 ANN

Training experimental values (T)

(b)

0 2 4 6 8 10 12 14 16 18

A
N

N
 c

al
cu

la
te

d 
va

lu
es

 (
A

)

0

2

4

6

8

10

12

14

16

18

T vs A
T = A  

R = 0.999

Time (h)

(c)

0 20 40 60 80 100 120 140 160 180

B
io

m
as

s 
(g

/l)

4

6

8

10

12

14

16

18

Real
ANN

Experimental validation  values (T)

(d)

4 6 8 10 12 14 16 18

A
N

N
 c

al
cu

la
te

d 
va

lu
es

 (
A

)

4

6

8

10

12

14

16

18

T vs A
T =  A

R = 0.986

Fig. 4 Comparison between experimental biomass concentration

values (thick line) and neural network-calculated biomass concentra-

tion values (dotted lines), using (a) training data set and (c) validation

data set. Parity plot between ANN-predicted and measured values of

biomass concentration, using (b) training data set and (d) validation

data set
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supervision and understanding of the biosurfactant pro-

duction process, obtaining on-line accurate measurements

and replacing expensive and difficult off-line procedures.

Conclusion

Although ANN softsensors for estimation of biomass

concentration are currently among the most studied bio-

process software sensor, owing to their great potential in

various applications, nothing has been specifically pub-

lished in the literature on their use in biosurfactant

production processes by C. lipolytica yeast.

This paper has demonstrated how an ANN of relatively

modest scale can be used to capture complex biosurfactant

production process by C. lipolytica dynamics. The quality

of results suggest that a good accurate relationship has been

identified. It was found that the biomass concentration in

biosurfactant production process by C. lipolytica can be

inferred from on-line measurements of pH and DO. Simple

and robust neural network-based software sensor with only

four neurons in the hidden layer was very good descriptive

model for C. lipolytica growth with pH and DO varying in

batch cultures. The results showed that the selected ANN

model can assuredly replace expensive instrumentation

used for the estimation of biomass concentration in bio-

surfactant production process by C. lipolytica.

Although this study was restricted to a software sensor

development for a biosurfactant production process by C.

lipolytica, the methodology of model building using neural

network may be applied to other chemical and biotechno-

logical processes.
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